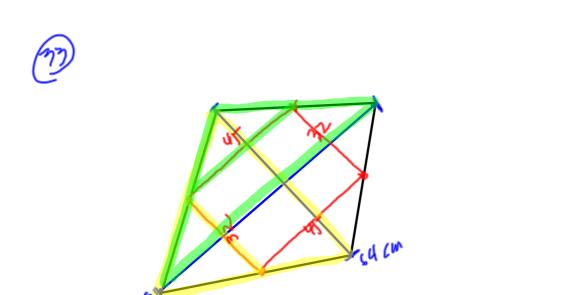
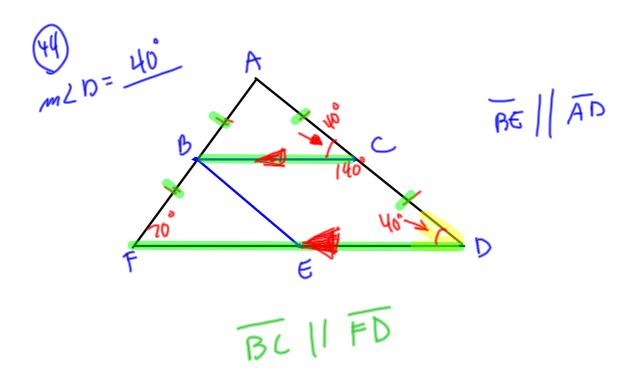


persent uner: 4, 9, (16) 28, 136, 49, 54, 81, ...





Construct a Perpendicular Bisector to a Segment

- 1) Using a straight edge, draw a segment on your paper.
- 2) Using your compass, construct its perpendicular bisector.

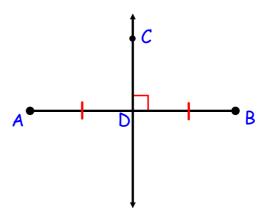
Construct an Angle Bisector

- 1) Using a straight edge, draw an angle on your paper.
- 2) Using your compass, construct its bisector.

Theorem 5-2: Perpendicular Bisector Theorem

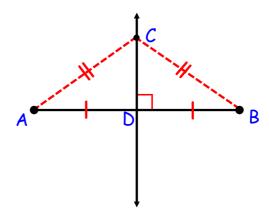
Theorem 5-2: Perpendicular Bisector Theorem

If a pt is on \bot bisector of a seg.



Theorem 5-2: Perpendicular Bisector Theorem

If a pt is on \bot bisector of a seg. then it is equidist from endpts of the seg.



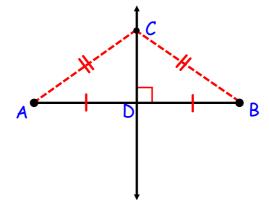
Theorem 5-2: Perpendicular Bisector Theorem

If a pt is on \bot bisector of a seg. then it is equidist from endpts of the seg.

Given: CD ⊥ AB

 \overrightarrow{CD} bisects \overrightarrow{AB}

 $\underline{\mathsf{Then}} \colon \overline{\mathsf{CA}} \cong \overline{\mathsf{CB}}$



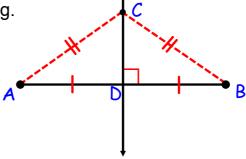
Theorem 5-3: Conv of Perpendicular Bisector Theorem

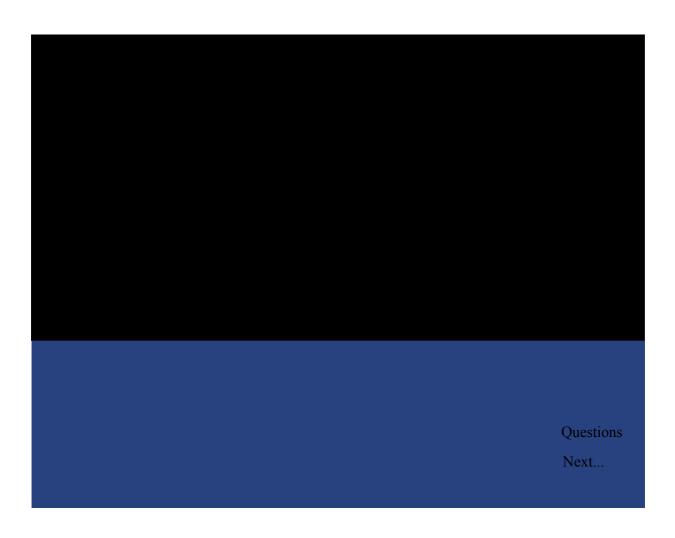
If a pt is equidist from endpts of the seg. Then it is on \bot bisector of that seg.

Given: $\overline{CA} \cong \overline{CB}$

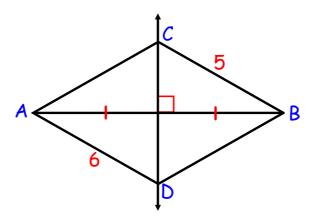
Then: $\overrightarrow{CD} \perp \overrightarrow{AB}$

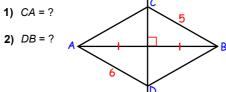
 \overrightarrow{CD} bisects \overrightarrow{AB}





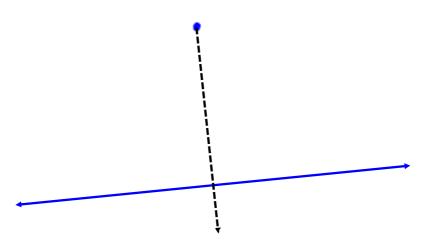
1 CA=





back...

Defn: Distance from a pt to a line



Defn: Distance from a pt to a line

The dist from a pt to a line

Defn: Distance from a pt to a line

The dist from a pt to a line is the len of \bot seg from pt to line.

Defn: Distance from a pt to a line

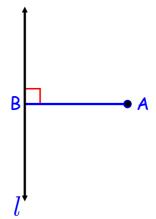
The dist from a pt to a line is the len of \bot seg from pt to line.

dist fm pt A to line l =

Defn: Distance from a pt to a line

The dist from a pt to a line

is the len of \bot seg from pt to line.



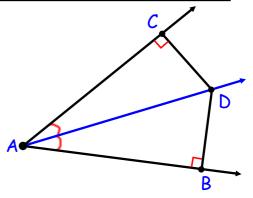
dist fm pt A to line l = AB

Theorem 5-4: Angle Bisector Theorem

If a pt is on an ∠ bisector then it is equidist from sides of the ∠.

Theorem 5-4: Angle Bisector Theorem

If a pt is on an ∠ bisector then it is equidist from sides of the ∠.



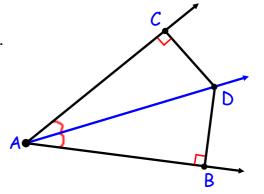
If a pt is on an ∠ bisector then it is equidist from sides of the ∠.

Given: AD bisects ∠CAB

 $\overrightarrow{CD} \perp \overrightarrow{AC}$

 $\overrightarrow{BD} \perp \overrightarrow{AB}$

Prove: CD = BD



Theorem 5-4: Angle Bisector Theorem

If a pt is on an ∠ bisector then it is equidist from sides of the ∠.

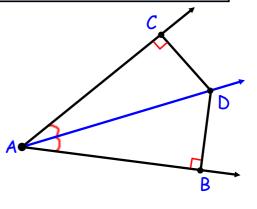
Given: AD bisects ∠CAB

 $\overline{CD} \perp \overline{AC}$

 $\overrightarrow{BD} \perp \overrightarrow{AB}$

Prove: CD = BD

 $\angle CAD \cong \angle BAD$ defn \angle bisector



If a pt is on an ∠ bisector then it is equidist from sides of the \angle .

Given: AD bisects ∠CAB

 $\overrightarrow{CD} \perp \overrightarrow{AC}$

 $\overrightarrow{BD} \perp \overrightarrow{AB}$

Prove: CD = BD

 $\angle CAD \cong \angle BAD$ defn ∠ bisector

 $\angle ACD \cong \angle ABD$ all rt $oldsymbol{\angle}$'s \cong

Theorem 5-4: Angle Bisector Theorem

If a pt is on an ∠ bisector then it is equidist from sides of the \angle .

Given: AD bisects ∠CAB

 $\overrightarrow{CD} \perp \overrightarrow{AC}$

 $\overrightarrow{BD} \perp \overrightarrow{AB}$

Prove: CD = BD

 $\angle CAD \cong \angle BAD$ defn ∠ bisector

 $\angle ACD \cong \angle ABD$ all rt \angle 's \cong

 $\overline{AD}\cong\overline{AD}$ reflex POC

If a pt is on an ∠ bisector then it is equidist from sides of the \angle .

Given: AD bisects ∠CAB

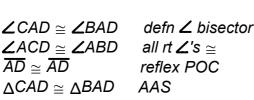
 $\overrightarrow{CD} \perp \overrightarrow{AC}$

BD ⊥ AB

Prove: CD = BD

 $\angle CAD \cong \angle BAD$ defn ∠ bisector ∠ACD ≅ ∠ABD all rt ∠'s ≅

 $\triangle CAD \cong \triangle BAD$



Theorem 5-4: Angle Bisector Theorem

If a pt is on an ∠ bisector then it is equidist from sides of the \angle .

Given: AD bisects ∠CAB

 $\overline{CD} \perp \overline{AC}$

BD _AB

Prove: CD = BD

 $\angle CAD \cong \angle BAD$ defn ∠ bisector

 $\angle ACD \cong \angle ABD$ all rt ∠'s ≅ $\overline{AD} \cong \overline{AD}$ reflex POC

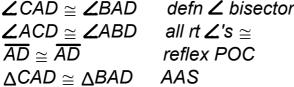
 $\triangle CAD \cong \triangle BAD$ AAS $\overline{\textit{CD}}\cong \overline{\textit{BD}}$ **CPCTC** D

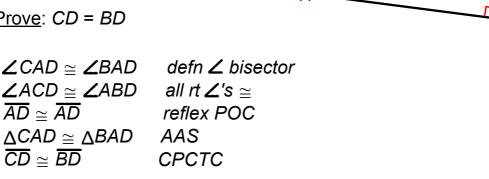
If a pt is on an ∠ bisector then it is equidist from sides of the \angle .

Given: AD bisects ∠CAB

 $\overrightarrow{CD} \perp \overrightarrow{AC}$ $\overrightarrow{BD} \perp \overrightarrow{AB}$

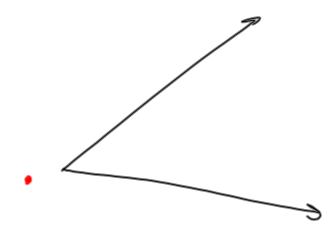
Prove: CD = BD



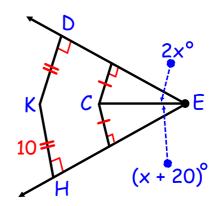


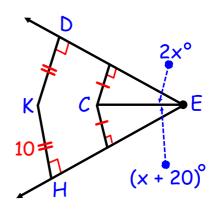
Theorem 5-5: Converse of Angle Bisector Theorem

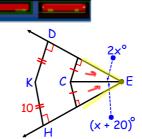
If a pt in the interior of an ∠ is equidist from sides of the ∠ then it is on the ∠ bisector.



D







back...

L5-2 HW Problems

Pg 251 #1-25, 35-39 odd, 44, 46, 50-52